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Joint Tensor Feature Analysis For Visual
Object Recognition

Wai Keung Wong, Zhihui Lai, Yong Xu, Member, IEEE, Jiajun Wen, and Chu Po Ho

Abstract—Tensor-based object recognition has been widely
studied in the past several years. This paper focuses on the
issue of joint feature selection from the tensor data and pro-
poses a novel method called joint tensor feature analysis (JTFA)
for tensor feature extraction and recognition. In order to obtain
a set of jointly sparse projections for tensor feature extraction,
we define the modified within-class tensor scatter value and the
modified between-class tensor scatter value for regression. The
k-mode optimization technique and the L2,1-norm jointly sparse
regression are combined together to compute the optimal solu-
tions. The convergent analysis, computational complexity analysis
and the essence of the proposed method/model are also pre-
sented. It is interesting to show that the proposed method is very
similar to singular value decomposition on the scatter matrix
but with sparsity constraint on the right singular value matrix
or eigen-decomposition on the scatter matrix with sparse man-
ner. Experimental results on some tensor datasets indicate that
JTFA outperforms some well-known tensor feature extraction
and selection algorithms.

Index Terms—Discriminant analysis, feature selection, object
recognition, sparse learning.

I. INTRODUCTION

FEATURE extraction or feature selection is an impor-
tant issue in pattern recognition. The classical
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feature extraction methods such as principle compo-
nent analysis (PCA) [1], [2] and linear discriminant
analysis (LDA) [3]–[5] are frequently used in the fields of
pattern recognition, computer vision, and data mining. PCA
focuses on minimizing the error of the reconstructive infor-
mation while LDA is used to maximize the discriminative
information with respect to the classification.

In past decades, there were many extended versions of PCA
and LDA. One of the key developments is the tensor exten-
sions of these classical methods. For example, two dimensional
PCA (2-DPCA) proposed by Yang et al. [6], bidirectional PCA
proposed by Zuo et al. [7], image-based generalized low rank
approximation proposed by Ye [8] and the multilinear PCA by
Lu et al. [9] are the representative methods on the develop-
ments of the classical PCA. Similarly, LDA was also extended
to be two dimensional LDA (2-DLDA) [10] and multilinear
LDA (MLDA) [11] for image feature extraction and color face
recognition [12], [13].

In order to avoid the singularity in computing the inverse
matrix of the within-class scatter matrix, maximal margin
criterion (MMC) [14] and its variation [15] were proposed
for discriminant feature extraction. MMC was also extended
to second order case [16], [17] and high order tensor cases,
i.e., general tensor discriminant analysis (GTDA) [18] and ten-
sor MMC (TMMC) [19], for feature extraction on the visual
object.

Some other interesting applications based on the ten-
sor representations were also explored. For example,
the empirical discriminative tensor analysis for crime
forecasting [20], which minimizes the empirical risk and
preserves the discriminative information. The biologically
inspired features [21], [22] based on the tensor data can also
be used for face and gait recognition. Tao et al. [23] proposed
the supervised tensor learning (STL) framework which is the
multilinear extension of the convex optimization-based learn-
ing algorithm. Multivariate multilinear regression (MMR) [24]
was applied to model the fitting procedure in the active appear-
ance model [25]. For the comprehensive understanding of the
tensor learning methods, readers can refer to the survey [26]
for more details.

However, these classical methods and its high order exten-
sions cannot obtain the sparse projection for feature extraction
and selection. Recently, sparse subspace learning methods has
been paid much attention on feature extraction. The common
property of these methods is to use the L1 norm-based sparse
regression methods [27]–[29] so as to learn the sparse pro-
jections. By using these techniques, the classical methods,
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i.e., PCA and LDA, were extended to sparse PCA (SPCA) [30]
and sparse discriminant analysis (SDA) [31]. It is shown that
by introducing the L1 norm-based sparseness constraint on the
learned subspace, the function of simultaneous feature selec-
tion and dimensionality reduction can be achieved by these
sparse feature extraction methods, which lead to good per-
formance in the recognition task and are more robust to the
outliers. Therefore, many types of SPCA [32], [33] and the
modified versions of sparse LDA [34]–[36] were proposed in
recent years.

No matter the L1 norm-based constraint or the directly
cardinality constraint on the bases of the learned subspace,
a potential drawback (i.e., SPCA, SDA, and their extended
versions mentioned above) is that they cannot provide the
subspaces with joint (consistent) sparseness. To address this
problem, joint L2,1-norms regularization method was pro-
posed in [37] for robust feature selection. By using the same
technique, Gu et al. [38] proposed the feature selection and
subspace learning (FSSL) method combining the graph spec-
tral analysis and joint L2,1-norm regularization. Similarly,
Hou et al. [39] integrated the L2,1-norm regression and spec-
tral decomposition to obtain the jointly sparse subspace for
feature extraction. Since the L2,1-norm-based regularized fea-
ture selection can jointly select the most relevant features from
the data points and is more robust than the traditional L2
norm regularized techniques, joint feature selection has been
used in semi-supervised leaning for multimedia data under-
standing [40], automatic image annotation [41], and classifier
design [42].

Although the L2,1-norm-based methods have been widely
used in many fields, most of the previous works focus on
the high dimensional vector-based representation. Due to the
potential singularity in computing the inverse of the matrix
and the heavy computational burdens caused by the very
high dimensionality patterns in optimization, it is necessary
to develop new methods to avoid these problems, and at the
same time to enhance the performance in feature extraction
and recognition tasks.

In this paper, motivated by the high order tensor-based dis-
criminant analysis methods and the L2,1-norm regression for
jointly sparse FSSL methods, we propose a novel method
called joint tensor feature analysis (JTFA) for sparse tensor
feature selection and subspace learning (FSSL). Our origi-
nal idea is to introduce the L2,1-norm regression for jointly
sparse discriminant feature selection and extraction from the
columns and rows of the image matrix (or from each mode of
the high order tensor data) so as to enhance the algorithm’s
performance. The detailed motivations for proposing JTFA are
stated in Section III-B.

The main contributions of this paper are as follows.
1) We adopt the idea of jointly sparse feature selection

and extraction from the tensor data to propose a new
discriminant analysis method called JTFA.

2) We present a novel method on how to modify the classi-
cal discriminant analysis method in regression form for
joint tensor feature extraction. Similarly, other regular-
izers based on different norms can be used in the same
way for tensor regression.

3) The comprehensive analyses, including the convergent
analysis, computational complexity analysis, and the
essence of the proposed method/model, are also explored
for the proposed JTFA.

4) Extensive experiments show that JTFA outperforms the
classical subspace learning methods and the SDA for
tensor objective recognition.

The rest of this paper is organized as follows. Section II
briefly discusses the related work and the details of the pro-
posed algorithm are shown in Section III. In Section IV,
theoretical analyses, including the convergence, computational
complexity, and the essence of the optimization model, are
shown. Experiments are presented in Section V, and the
conclusion is given in Section VI.

II. RELATED WORK

In this section, we briefly discuss some related works on
feature extraction and spare feature selection.

LDA is one of the classical discriminant feature extraction
methods. Based on the tensor representation, the classical LDA
was extended to 2-DLDA [10] and MLDA [11]. By using
the differential criterion, Li et al. [14] proposed the MMC
method, which was also extended to the multilinear cases,
i.e., GTDA [18] and TMMC [19]. The common property of
these methods is to use the eigen-decomposition method to
compute the projections. With the development of the ten-
sor learning methods, biologically inspired features [21], [22],
and MMR [24] were recently proposed for objective recog-
nition. However, these methods only have the function of
dimensionality reduction and cannot perform sparse feature
selection.

The L1 norm-based sparse regularization methods pro-
vide an effective way for simultaneous feature extraction
and sparse feature selection. The representative methods
include SPCA [30], SDA [31], and its modifications [34]–[36].
These methods focus on the high-dimensional vector rep-
resentations for sparse dimensionality reduction and feature
selection. However, the nonzero elements of the projections
derived by the L1 norm regression can lie on any location
of the learned projections and thus are absent for the joint
sparsity.

The L2,1-norm-based joint feature selection is a novel way
for sparse feature selection. The jointly sparse learning meth-
ods such as FSSL and those proposed in [39]–[43] can obtain
the jointly sparse subspace. The nonzero elements of the
learned projections based on the L2,1-norm regression lie on
the same location and thus have the function of jointly sparse
feature selection. However, these existing jointly sparse learn-
ing methods only focus on the high-dimensional vector and
how to deal with the high-order tensor data and enhance the
discriminant capability of the jointly sparse learning methods
remains unsolved. To deal with this problem, the proposed
JTFA inherits the discriminant capability from the multiLDA
and the joint sparsity from the L2,1-norm-based learning meth-
ods. Based on the novel definitions of the between-class and
within-class scatter matrices, the discriminant projection learn-
ing procedures are converted to the L2,1-norm multilinear
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regularized regression, which will be shown in the following
section.

III. JTFA

In this section, we first briefly present some basic multilin-
ear notations, definitions, and operations following the same
way as in previous tensor learning methods [9], [11], [37].
Since we focus on the jointly sparse feature selection and
extraction, we present the key idea and the related definitions
first. In order to realize the goal of jointly sparse feature selec-
tion on the tensor data, the L2,1 norm penalty terms are added
to the objective function to regularize the projections used for
feature extraction and selection. At last, an iterative method is
proposed to solve the optimization problem.

A. Preparations

In this paper, we follow the similar definitions and notations
as in [9], [11], and [37]. If there are no special instructions,
lowercase and uppercase italic letters, i.e., i, j, m, k, α, β, N,
etc., denote scalars, bold lowercase letters, i.e., a, b, u, etc.,
denote vectors, and bold uppercase letters, i.e., A, B, S,�,
etc., denote the matrices, and the Lucida calligraphy italic
letters, i.e., X ,Y denote the tensors.

Assume that the training samples are represented as the nth-
order tensor {Xi ∈ Rm1×m2×···×mn , i = 1, 2, . . . , N}, where N
denotes the total number of the training samples. The purpose
of the tensor feature extraction is to obtain a set of sparse
projection matrix {Ui ∈ Rdi×mi , di ≤ mi, i = 1, 2, . . . , n} that
map the original high-order tensor data into a low-order tensor
space

Yi = Xi ×1 U1 ×2 U2 · · · ×n Un. (1)

In order to compute the series of projection matrices, we
need the following definitions.

Definition 1: The inner product of two tensors
X ,Y ∈ Rm1×m2×···×mn is defined as < X ,Y >=∑m1×m2×···×mn

i1,=1,...,in=1 Xi1,...,inYi1,...,in . The norm of a tensor is
defined as ‖X‖ = √

< X ,X >. The tensor distance between
two tensors X and Yis defined as D(X , †) = ‖X − Y‖.

Definition 2: The mode-k flattening of the nth-order tensor
Xi ∈ Rm1×m2×···×mn(i = 1, 2, . . . , N) into a matrix X(k) ∈
Rmk×∏i �=k mi , i.e., X(k) ⇐k X , is defined as X(k)

ik,j
= Xii,i2,...,in ,

where j = 1 +∑n
l=1,l �=k(il − 1)

∏n
o=l+1,o �=k mo.

Definition 3: The mode-k product of tensor X with matrix
U ∈ Rm′

k×mk is defined as Y = X ×k U, where

Yi1,...,ik−1,i,ik+1,...,in = ∑m′
k

j=1 Xi1,...,ik−1,j,ik+1,...,in Ui,j ( j =
1, . . . , m′

k) and Ui,j denotes the element in the matrix U of
coordinate (i, j).

For a given matrix A = [aij] ∈ Rd×m, we denote the ith row
of A by ai. The Frobenius norm of matrix A is defined as

‖A‖F =
√
√
√
√
∑d

i=1

m∑

j=1

a2
ij =

√
∑d

i=1

∥
∥ai
∥
∥2

2. (2)

The L2,1-norm of a matrix was first introduced in [16]
as rotational invariant L1-norm and also used for multitask

learning and tensor factorization. It is defined as

‖A‖2,1 =
d∑

i=1

√∑m

j=1
a2

ij =
d∑

i=1

∥
∥ai
∥
∥

2. (3)

With the above preparations, we begin to present our method
in the following subsections.

B. Motivations and the Novel Definitions

As mentioned in previous sections, we aim to perform
jointly sparse feature selection and extraction on the tensor
data. For simplicity, we take the image matrix (two order ten-
sor) as an example. Since the image matrix contains a lot of
redundant information (i.e., the columns or rows are corre-
lated), not all the pixels are helpful for the feature extraction
and recognition task. We expect to jointly extract the discrim-
inant information sparsely embedded in the image matrix in
some rows or columns. In other words, we tend to find the
optimal jointly sparse matrices U1 and U2 (sparse in column)
for feature extraction from the image matrix X so as to obtain
the small size feature matrix UT

1 XU2. In order to obtain the
jointly sparse matrices Ui s, the L2,1-norm regularized term is
appended to the objective function with respect to these pro-
jective matrices. We introduce the new variables Pk s in the
model so that the model can be formulated into regression
form. Thus, it is convenient to use the L2,1-norm regularized
regression method to compute the optimal solution of the pro-
posed objective function. By using the idea of LDA/MMC,
the proposed objective function also aims to minimize the
modified within-class tensor scatter value and maximize the
modified between-class tensor scatter value. Therefore, we
need the following novel definitions.

For simplicity, we suppose that there are C classes and each
class has Nw training samples in this paper.

Definition 4: The modified within-class tensor scatter value
SW is defined as

SW =
C∑

j=1

Nw∑

i=1,Xi∈Cj

∥
∥Xi − X̄j ×1 U1PT

1 ×2 U2PT
2 · · · ×n UnPT

n

∥
∥2

F

(4)

where X̄j denotes the mean value of the tensor samples in the
jth class and Cj denotes the training sample set of the jth class.

Definition 5: The modified between-class tensor scatter
matrix SB is defined as

SB =
C∑

j=1

Nw
∥
∥X̄j − X̄ ×1 U1PT

1 ×2 U2PT
2 · · · ×n UnPT

n

∥
∥2

F

(5)

where X̄j denote the mean value of the tensor samples of jth
class and X̄ denote the mean value of all the training samples,
respectively.

C. Objective Function of JTFA and its Solutions

The objective function of JTFA is to minimize the tensor
discriminant function of the L2,1-norm penalty optimization
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problem with a set of constraints

min J (U1, U2, . . . , Un, P1, P2, . . . , Pn)

� min SW − μSB +
n∑

i=1

γi ‖Ui‖2,1

s.t. PT
1 P1 = I1, PT

2 P2 = I2, . . . , PT
n Pn = In (6)

where μ is the parameter to balance the two scatter values and
γi s are the parameters for the regularization terms.

For i �= k, when all the Ui s and Pi s are given, we obtain
the mode-k unfolding form of the optimization

min
Uk,Pk

J (Uk, Pk) = min
Uk,Pk

S(k)
W − μS(k)

B +
n∑

i=1

γi ‖Ui‖2,1

s.t. PT
k Pk = Ii (7)

where

S(k)
W =

C∑

j=1

Nw∑

i=1,X(k)
i ∈Cj

∥
∥
∥
(

X(k)
i − X̄(k)

j UkPT
k

)∥
∥
∥

2

F
(8)

S(k)
B =

C∑

j=1

Nw

∥
∥
∥X̄(k)

j − X̄(k)UkPT
k

∥
∥
∥

2

F
(9)

where X̄(k)
j denotes the mean value of the mode-k flattening of

the tensor samples in the jth class and X̄(k) denotes the mean
value of the mode-k flattening of the tensor samples of all the
training samples, that is

X̄(k)
j ⇐k X̄ ×1 U1PT

1 · · · ×k−1 Uk−1PT
k−1 ×k+1 Uk+1PT

k+1 · · ·
×nUnPT

n

and

X̄(k) ⇐k X̄ ×1 U1PT
1 · · · ×k−1 Uk−1PT

k−1 ×k+1 Uk+1PT
k+1 · · ·

×nUnPT
n .

Since Uis are fixed except for any i �= k, then
∑

i �=k ‖Ui‖2,1
becomes a constant. From (8) and (9) and using the constraint
PT

k Pk = Ik we have

S(k)
W = tr

⎛

⎜
⎝

C∑

j=1

Nw∑

i=1,X(k)
i ∈Cj

X(k)T
i X(k)

i − 2PT
k X(k)T

i X̄(k)
j Uk

+ UT
k X̄(k)T

j X̄(k)
j Uk

⎞

⎟
⎠

S(k)
B = tr

⎛

⎝
C∑

j=1

μNw

(
X̄(k)T

i X̄(k)
i − 2PT

k X̄(k)T
i X̄(k)Uk

+ UT
k X̄(k)T X̄(k)Uk

⎞

⎠.

For ease of representation, we integrate the terms in S(k)
W

and S(k)
B related to Pk and Uk together. Thus, we denote

S̃(k)
1 =

C∑

j=1

Nw∑

i=1,X(k)
i ∈Cj

X(k)T
i X̄(k)

j − μ

C∑

i=1

NwX̄(k)T
i X̄(k). (10)

Similarly, we integrate the terms only related to the variable
Uk together. Thus, we have

S̃(k)
2 =

C∑

j=1

Nw∑

i=1,,X(k)
i ∈Cj

X̄(k)T
j X̄(k)

j − μ

C∑

i=1

NwX̄(k)TX̄(k)

=
C∑

j=1

Nw∑

i=1

X̄(k)T
j X̄(k)

j − μ

C∑

i=1

NwX̄(k)TX̄(k). (11)

When all the Uis and Pis are fixed except for any
i �= k, by discarding the constants in S(k)

W and S(k)
B and

using (10) and (11) for representation, we have the following
optimization problem from objective function (6):

min
Uk,Pk

J (Uk, Pk)

= min
Uk,Pk

tr
(
−2PT

k S̃(k)
1 Uk + UT

k S̃(k)
2 Uk

)
+ γi ‖Uk‖2,1

s.t. PT
k Pk = Ik. (12)

The above optimization problem is the core component
of the proposed algorithm, which will be solved in next
subsection.

D. Optimal Solution

From the analysis of the previous subsection, we obtain
the mode-k minimization problem of the L2,1-norm regular-
ized optimization. According to the definition of the L2,1-norm
about the projection matrix Uk, we could define a diagonal
matrix Gk with the ith diagonal element as

Gk
ii = 1

2
∥
∥uk

i

∥
∥

2

(13)

where uk
i denotes the ith row of matrix Uk. Thus the objective

function in (12) is equivalent to

min
Uk,Pk

J (Uk, Pk)

= min
Pk,Uk

tr
(
−2PT

k S̃(k)
1 Uk + UT

k

(
S̃(k)

2 + γiGk
)

Uk

)

s.t. PT
k Pk = Ik. (14)

For the above optimization problem, we design an itera-
tive algorithm to solve it. The algorithm step can be stated as
follows. First, fix Pk to compute Uk, then update Gk and fix
Uk to compute Pk; iterate these two steps until the algorithm
converges.

For the given Pk, taking the partial deviation of (14) with
respect to Uk to be equal to 0, we obtain

−S̃(k)
1 Pk +

(
S̃(k)

2 + γiGk
)

Uk = 0.

This gives

Uk =
(

S̃(k)
2 + γiGk

)−1
S̃(k)

1 Pk. (15)

When Uk is given, we need to update the matrix Gk

in (14). Then the minimum problem in (14) is equivalent to
the maximum problem as follows:

max
Pk

tr
(

PT
k S̃(k)

1 Uk

)

s.t.PT
k Pk = Ik. (16)
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TABLE I
JTFA ALGORITHM

According to [30, Th. 4], the optimal solution for the above
problem is given by the SVD of S̃(k)

1 Uk. Let

S̃(k)
1 Uk = ÛkD̂kV̂T

k . (17)

Then the optimal solution of (16) is

Pk = ÛkV̂T
k . (18)

In fact, as computing the matrix Uk in (15) needs the input
of Gk which is still not directly obtained. Therefore, we need
to compute the matrix Gk in the designed iterative algorithm.
Once the Uk and Pk are obtained, we can compute the other
pair of variables in the same way. Iterating the above proce-
dures will give the local optimal solutions of the algorithm.
The algorithm details are described in Table I.

E. Comparison and Discussion

From the above four subsections, we can find the main dif-
ferences between JTFA and the previous methods. FSSL is a
high-dimensional vector-based method, which uses the spec-
tral vectors and L2,1-norm regression for feature selection.
Although MMR [24] also introduced the concept of tensor,
but MMR mainly focuses on the image matrix (i.e., second
order tensor) and the label indicator matrix Y as the one
in ridge regression is used for regression. Thus, the essence
of MMR is the second order tensor extension of the ridge
regression or least square regression. JTFA is significantly dif-
ferent from STL [23] in the objective function and the method
used in computing the optimal solution since STL is the mul-
tilinear extension of the convex optimization-based learning
algorithm.

There are some common properties of MLDA, TMMC, and
JTFA. All of them directly use the idea of Fisher discriminant
analysis and the tensor as the input. However, the projections
of MLDA, TMMC, MMR, and STL are not (jointly) sparse.
Thus they do not have the function of jointly sparse feature
selection. Unlike the other tensor-based algorithms, JTFA can
rewrite the multiLDA method into regression form and use
L2,1-norm regression to learn a set of jointly sparse projec-
tions. Thus, the advantages of JTFA against MLDA, TMMC,

MMR, and STL are that JTFA not only can perform feature
extraction but also jointly sparse feature selection from each
mode of the tensor data.

In short, JTFA is a novel method on the tensor discrim-
inant analysis, which provides a representative way on how
to obtain the multilinear jointly sparse projections. The most
significant difference between JFTA and the other tensor-
based methods is that JTFA can obtain a set of jointly sparse
projections for achieving the advantages of simultaneous fea-
ture extraction and feature selection from each mode of the
tensors.

IV. THEORETICAL ANALYSIS

In this section, we will further give the theoretical analy-
sis of the proposed algorithm, which includes the convergent
analysis, computational complexity analysis, and the essence
of the optimization method.

A. Convergence

In order to prove the convergence of the proposed algorithm,
we need the following lemma.

Lemma 1 [37]: For any nonzero vectors p, pt ∈ Rc, the
following inequality holds:

‖p‖2 − ‖p‖2
2

2 ‖pt‖2
≤ ‖pt‖2 − ‖pt‖2

2

2 ‖pt‖2
. (19)

With Lemma 1, we have the following theorem.
Theorem 1: Suppose all the variables in the objective func-

tion are given except for Uk and Pk. The iteration approach
presented in Section III-D will monotonically decrease the
objective function J(Uk, Pk) in each iteration and converge
to the local optimum of the problem.

Proof: For ease of representation, we denote the objective
function of (14) as J(Uk, Pk) = J(Uk, Pk, Gk). Suppose for
the t − 1th iteration, we obtain U(t−1)

k and P(t−1)
k . From (15),

we can find that

J
(

U(t)
k , P(t−1)

k , Gk,(t−1)
)

≤ J
(

U(t−1)
k , P(t−1)

k , Gk,(t−1)
)
. (20)
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Since the SVD gives the optimal P(t)
k which further

decreases the objective function, we have

J
(

U(t)
k , P(t)

k , Gk,(t−1)
)

≤ J
(

U(t−1)
k , P(t−1)

k , Gk,(t−1)
)
. (21)

Once the optimal P(t)
k and U(t)

k are obtained, we have

tr
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1 U(t)
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k
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k
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U(t−1)
k

)
. (22)

That is
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. (23)

According to the Lemma 1, following the same way as
in [37], it is easy to show that:
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Then combining (23) and (24), we obtain
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That is

J
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Therefore, the algorithm will converge to the local optimum
of the problem (12).

Theorem 2: The iterative algorithm will monotoni-
cally decrease the objective function J(U1, U2, . . . , Un,

P1, P2, . . . , Pn) in each iteration and converge to the local
optimum of the tensor problem.

Proof: Let J(U(t−1)
1 , U(t−1)

2 , . . . , U(t−1)
n , P(t−1)

1 , P(t−1)
2 ,

. . . , P(t−1)
n ) be the objective function of the proposed method.

We need to prove that it is nonincreasing and has a lower

bound (at least bigger than a constant const > 0). By
frequently using Theorem 1, we can conclude that

J
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n
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> const.

Therefore, the objective function of (6) will converge to a
local optimum.

B. Computational Complexity Analysis

For ease of understanding, we suppose that each mode of
the tensor has the same size, i.e., m1 = m2 = · · · = mn = m,
and the number of the training tensors is N. The main com-
putational complexity of JTFA algorithm is to compute the
scatter matrix S̃(k)

1 , the matrix Uk in (15), the multilinear
projection operation, and SVD of (17) in each step. The com-

putation needed to compute the scatter matrix S̃(k)
1 is in the

order of O(Nnmn+1) (upper bounded). Computing the matrix

Uk in (15) needs O(m3). Computing the multilinear projec-
tion needs O(nmn+1). SVD of (17) also needs O(m3). If the
algorithm needs T iteration steps, then the total computational
complexity is in the order of O(TNnmn+1 + Tnm3 + Tnmn+1).

C. Intrinsic Connections Between Uk and Pk

In this subsection, we explore the close relationship between
the subspace Uk and Pk.

Firstly, we have the following conclusion.
Lemma 2: S̃(k)

1 = S̃(k)
2 for any k.

Proof: According to the definitions of X̄(k)
j and X̄(k),

we have
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NwX̄(k)T X̄(k) = S̃(k)
2 .

Lemma 2 indicates that even if the numerators are presented
in different forms, but they are equal to each other. Since
S̃(k)

1 = S̃(k)
2 , this property will decrease the computational bur-

den in computing the scatter matrix. By using this property,
we can prove the following theorem.
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Fig. 1. Sample images of one person on FERET face database.

Theorem 3: If γk → 0(∀k), then Uk → Pk(∀k). If γk =
0(∀k), then Uk = Pk.

Proof: From (15), we know that

Uk = (S̃(k)
2 + γkGk)−1S̃(k)

1 Pk. Using Lemma 2, we have
Uk = (S̃(k)

1 + γiGk)−1S̃(k)
1 Pk. Then when γk → 0,

Uk → (S̃(k)
1 + 0Gk)−1S̃(k)

1 Pk = Pk. It is obvious that if
γk = 0(∀k), then Uk = Pk.

D. Essence of the Optimization Problem for Uk and Pk

In this subsection, we explore the essence of Uk and Pk

in the optimization problem (14). Substituting (15) into (14)
gives the following optimization problem:

min
Pk

tr

(

−2PT
k S̃(k)

1

(
S̃(k)

1 + γiGk
)−1

S̃(k)
1 Pk

)

s.t. PT
k Pk = Ik. (27)

Obviously, the above minimization problem is equivalent to
the following maximum problem:

max
Pk

tr
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PT
k S̃(k)

1

(
S̃(k)

1 + γiGk
)−1

S̃(k)
1 Pk

)

s.t. PT
k Pk = Ik. (28)

It is clear that the optimal solution is the standard eigen
decomposition of the following eigen equation:

S̃(k)
1

(
S̃(k)

1 + γiGk
)−1

S̃(k)
1 Pk = Pk� (29)

where � is the eigenvalue matrix. Therefore Pk contains the
eigenvectors corresponding to the larger eigenvalues of (29).

If Pk contains all the eigenvectors of (29), since
Uk = (S̃(k)

1 + γkGk)−1S̃(k)
1 Pk, from (29) we have

S̃(k)
1 Uk = Pk� ⇒ PT

k S̃(k)
1 Uk = �

(
since PT

k Pk = Ik
)
. (30)

From the above analysis, we can obtain the following inter-
esting conclusion. The essence of the optimization problem
are as follows. If γk > 0, Ukis sparse in row, (15) indicates
that the optimization problem of the proposed model (14) is
to find an row-sparse Uk and an orthogonal matrix to diag-
onalize S̃(k)

1 ; If γk = 0 (or γk → 0), Uk is not sparse and
Uk = Pk (or Uk → Pk). That is, model (14) mainly finds the
optimal nonsparse matrix to diagonalize scatter matrix S̃(k)

1 ,
i.e., PT

k S̃(k)
1 Pk = � (or PT

k S̃(k)
1 Uk → �). This is very sim-

ilar to SVD or standard eigen decomposition on the scatter
matrix, in other words, it is similar to the well-known PCA
or MMC and its extensions, in which the optimal solution can
be obtained by SVD or standard eigen decomposition.

V. EXPERIMENTS

In this section, a set of experiments is presented to evalu-
ate the proposed JTFA algorithm for tensor feature extraction

and recognition. We compared it with the traditional LDA,
the recently proposed L1 norm-based sparse subspace learn-
ing methods SLDA [34], and the most related L2,1-norm-based
FSSL [38]. For FSSL, LDA graph was used and thus c − 1
projections were obtained. The tensor-based methods, i.e.,
MLDA [11] and TMMC [19], were also compared. The near-
est neighborhood classifier with the Euclidean distance was
used in all the experiments.

A. Experiments on FERET Face Database

The FERET face database is a result of the FERET program,
which was sponsored by the U.S. Department of Defense
through the DARPA Program [44]. It has become a standard
database for testing and evaluating state-of-the-art face recog-
nition algorithms. The proposed method was tested on a subset
of the FERET database. This subset included 1400 images
of 200 individuals (each individual has seven images) and
involved variations in facial expression, illumination, and pose.
In the experiment, the facial portion of each original image
was automatically cropped based on the location of the eyes,
and the cropped images were resized to 40 × 40 pixels. The
sample images of one person are shown in Fig. 1.

In this experiment, we investigate the performance of the
recognition rates of different methods and the properties of
the parameters of JTFA are also shown. In the experiments,
four images were selected as the training set and the remaining
three images were used for testing. We compared our methods,
i.e., JTFA and JTFA + LDA, with the classical LDA method,
sparse subspace methods, i.e., SLDA and FSSL, and tensor
learning methods MLDA, TMMC, and MLDA + LDA and
TMMC + LDA. Table II lists the recognition rates of each
method. Fig. 2(a) shows the recognition rate versus the param-
eters γ and μ on the FERET face database. Fig. 2(b) shows
the recognition rates versus the variations of the dimensions. It
is noted that, for LDA and ∗+LDA (where ∗ denotes MLDA,
TMMC, and JTFA), the real dimension is the five times of the
number marked in the horizontal axis.

From Fig. 2(a), we can see that the optimal value of the
parameter μ lies on the area of [101, 103] and the optimal
γ lies on the area of [10−3, 101]. In other words, when the
parameters lie on these areas, JTFA is very robust to the
parameters’ variation. When the γ ≤ 10−4 (i.e., γ → 0),
the recognition rate will be decreased, which indicates that
the regularization parameter γ is very important for JTFA
to achieve its best performance. The above empirical study
will lead us to effectively use the JTFA algorithm so as to
obtain good performance in the following experiments from
Sections V-B to V-E.

From Table II and Fig. 2(b), it can be found that JTFA
performs best among the compared methods, and LDA can
enhance the performance of JTFA in image feature extraction.

B. Experiments on AR Face Database

The AR face database [45] contains over 4000 color face
images of 126 people (70 men and 56 women), including
frontal views of faces with different facial expressions, light-
ing conditions, and occlusions. The pictures of 120 individuals
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(a) (b)

Fig. 2. (a) Recognition rate versus the parameters Gamma (γ ) and Mu (μ) on the FERET face database. (b) Recognition rates (%) versus the dimensions
of different methods on the FERET face databases.

(a) (b)

Fig. 3. Average recognition rates (%) versus the (a) dimensions of different vector-based discriminant analysis methods and the (b) tensor-based methods
on the AR face database.

Fig. 4. Sample images of one person form the AR face database.

TABLE II
PERFORMANCE (RECOGNITION RATE AND DIMENSION) OF DIFFERENT METHODS ON FERET FACE DATABASE

(65 men and 55 women) were selected and divided into two
sessions (separated by two weeks) and each session contains
13 color images. Twenty images of these 120 individuals were
selected and used in our experiments. The face portion of

each image was manually cropped and then normalized to
50 × 40 pixels. The sample images of one person are shown
in Fig. 2. These images vary as follows: 1) neutral expression;
2) smiling; 3) angry; 4) screaming; 5) left light on; 6) right
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TABLE III
PERFORMANCE (RECOGNITION RATE, STANDARD DEVIATION, AND DIMENSION) OF DIFFERENT METHODS

ON THE AR FACE DATABASE

Fig. 5. (a) Key silhouettes of ten actions from the Weizmann database. (i) Bend. (ii) Jack. (iii) Jump. (iv) Pjump. (v) Run. (vi) Side. (vii) Skip. (viii) Walk.
(ix) Wave1. (x) Wave2. (b) Example of the bending action in spatiotemporal domain from Weizmann database.

light on; 7) all sides light on; 8) wearing sun glasses; 9) wear-
ing sun glasses and left light on; and 10) wearing sun glasses
and right light on.

In the experiments, l (l = 3, 5) images of each indi-
vidual were randomly selected and used for training, and
half of the remaining images were used for validation and
test, respectively. The optimal value of parameter μ was
selected from the set {101, 102, 103} and γ from the set
{10−3, 10−2, 10−1, 100, 101} since our empirical study indi-
cates that JTFA can achieve the best performance on the
different databases. The dimensions of different mode are var-
ied from [1, 40] for the tensor methods and from 5 to 200 with
step as 5. For FSSL and SLDA, the regularization parameters
were also selected from {10−3, 10−2, . . . , 103}. The optimal
parameters determined by the validation set were used to train
the algorithm and the learned projections were used for feature
extraction. The experiments were independently performed ten
times and the average recognition rates on the test set are
calculated and reported.

The performance of different methods on the AR face
database are listed in Table III. The recognition rates versus
the dimensions of vector-based discriminant analysis meth-
ods are shown in Fig. 3(a) and the tensor-based methods
are shown in Fig. 3(b). It is noted that, for LDA and
∗+LDA (where ∗ denotes MLDA, TMMC, and JTFA), the
real dimension is the three times of the number marked in
the horizontal axis.

C. Experiments on Weizmann Action Database

The experiment was performed on the Weizmann
database [46], which is a commonly used database for human
action recognition. There are 90 videos from ten categories

of actions included bending (bend), jacking ( jack), jumping
( jump), jumping in places (pjump), running (run), galloping-
side ways (side), skipping (skip), walking (walk), single-hand
waving (wave1), and both-hands waving (wave2), which were
performed by nine subjects. The centered key silhouettes of
each action are shown in Fig. 5(a).

In order to represent the spatiotemporal feature of the sam-
ples, ten successive frames of each action were used to extract
the temporal feature. Fig. 5(b) shows a tensor sample of the
bending action. Each centered frame was normalized to the
size of 32 × 24 pixels. Thus the tensor sample was repre-
sented in the size of 32 × 24 × 10 pixels. It should be noted
that there is no overlapped frames in any two tensors and the
starting frames of the tensors are not normalized to the begin-
ning frames of each action. Thus, the recognition tasks are
difficult and close to the real-world applications. Therefore, if
one aims to get high recognition accuracy, the methods used
for feature extraction should be robust to starting frames and
actions’ variations. In the experiments, l (l = 3, 5) action ten-
sors of each category were randomly selected and used for
training and one half of the remaining tensors as validation
and test set, respectively. The experimental procedures were
the same as in Section V-B. The recognition rates of each
method are listed in Table IV, and the variations of the average
recognition rates versus the dimensions are shown in Fig. 6. It
can be found that JTFA also outperforms the other algorithms
in action tensor feature extraction.

D. Experiments on Cambridge Hand Gesture Database

The Cambridge hand gesture database [47] consists of
900 image sequences of nine gesture classes, which are defined
by three primitive hand shapes and motions. The objective of
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TABLE IV
PERFORMANCE (RECOGNITION RATE, STANDARD DEVIATION, AND DIMENSION) OF DIFFERENT METHODS

ON THE WEIZMANN ACTION DATABASE

TABLE V
PERFORMANCE (RECOGNITION RATE, STANDARD DEVIATION, AND DIMENSION) OF DIFFERENT METHODS ON THE

CAMBRIDGE HAND GESTURE DATABASE

Fig. 6. Average recognition rates (%) versus the dimensions of different
methods on the Weizmann action database.

using this data set is to classify different shapes as well as
different motions at a time. Each class contains 100 image
sequences (five different illuminations × ten arbitrary motions
× two subjects). Each sequence was recorded in front of a
fixed camera having roughly isolated gestures in space and
time. Thus, fairly large intraclass variations in spatial and tem-
poral alignment are reflected in the data set. Some sample
images of nine different gesture classes are shown in Fig. 7(a).
The experimental procedures are the same as in Weizmann
action database. The recognition rates of each method are
listed in Table V.

E. Experimental Results and Discussions

From the experimental results listed in Tables II–V and
the figures presented in previous subsections, we have the
following observations and corresponding analyses.

1) JTFA performs better than the previous tensor learning
algorithms such as MLDA and TMMC. JTFA + LDA

performs better than JTFA and LDA. Among all the
results listed in this paper, JTFA + LDA obtains the best
performance. This indicates that the selected features by
JTFA can further enhance the LDAs performance.

2) For the LDA methods, SLDA and FSSL usually perform
better than the classical LDA in image or tensor feature
extraction. Thus, feature selection is very important for
enhancing the recognition rates.

3) The image matrix-based methods (i.e., second order
tensor-based MLDA, TMMC, and JTFA) may not be
superior to the vector-based methods such as LDA,
SLDA, and FSSL. This can be found from the exper-
imental results on AR face database listed on Table III.
However, with the increasing number of the order
(i.e., when the number of the order is 3), the tensor-based
methods concisely perform better than the vector-based
methods. The possible reason is that with the rapid
growth of the dimensions, the over-fitting of these meth-
ods and the decrease of the computational accuracy in
computing the optimal solutions will possibly lead to
deteriorate the performance.

4) Introducing the regularization term for sparse feature
selection usually can enhance the performance. For
example, SLDA performs better than LDA, and JTFA
performs better than MMC, although they use very
similar idea in feature extraction. Moreover, the two
stage strategy of “∗+LDA” (where ∗ denotes the tensor
learning methods) can further improve the algorithms’
performance.

5) Although there are different expressions, lighting condi-
tions and the starting frame of the tensor, JTFA is more
robust to the other tensor-based discriminant analysis
methods. The key reason is that JTFA has the sparse
feature selection capability, which reduces the negative
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(b)(a)

Fig. 7. (a) Some sample images on Cambridge hand gesture database. (b) Example of the convergence curve of JTFA algorithm.

influences on the data obtained from the outside con-
dition. This also demonstrates that the methods with
the sparse constraint on the projections can obtain more
robustness/stability.

6) Theoretical analysis in previous section indicates that
JTFA is convergent. Fig. 7(b) shows an example on
the convergence curve of JTFA algorithm on FERET
face database. It can be seen that JTFA can converge
within several iterations. There is similar property on
other databases.

VI. CONCLUSION

In this paper, a novel tensor-based discriminant feature
selection method called JTFA is proposed for sparse subspace
learning. The L2,1 norm was introduced in the JTFA model,
and an iterative algorithm was designed to solve the opti-
mization model. We proved the convergence of the proposed
algorithm, and the theoretical analyses show that the designed
iterative algorithm for the optimization problem converges
to local optimum. Moreover, the computational complexity
and the essence of the optimization procedures were also
presented. We show that the essence of the optimization prob-
lem is to compute two matrices so as to diagonalize the
scatter matrix similar to SVD or eigen-decomposition with
sparse manner. Experiments on four well-known object recog-
nition datasets showed that JTFA performed better than the
traditional LDA methods and the miltilinear discriminant anal-
ysis methods. It can also be found from the experiments
that the discriminant feature selection capability of the pro-
posed JTFA is superior to the recently proposed L1 norm and
L2,1 norm-based sparse discriminant analysis methods.
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